首页 > 最新目录 > 正文

10.基于小波分析与神经网络集成方法的轴承故障诊断研究*

日期:2013-09-15 17:30:00 点击:

.

 高文杰1,王建国1,高立新2,张文兴1

(1.内蒙古科技大学机械工程学院,内蒙古包头014010;2. 北京工业大学机械工程学院,北京100124)

关键词:滚动轴承;故障诊断;特征提取;小波- BP 神经网络;模式识别

中图分类号:TP183 文献标识码:A

摘要:鉴于小波分析与BP 神经网络在故障诊断中各自存在的局限性,提出基于小波- BP 神经网络的轴承故障模式识别技术. 采用具有良好时频局部特性的小波基函数替代传统BP 网络的激励函数,从而构造小波- BP 神经网络,并且对其进行训练,获得模式识别网络,再用新数据进行网络检验,仿真结果表明该方法实用有效.

esearch of bearing fault diagnosis based on integration of wavelet analysis and neural network

GAO Wen-jie1WANG Jian-guo1GAO Li-xin2ZHANG Wen-xing1

(1 Mechanical Engineering SchoolInner Mongolia University of Science and TechnologyBaotou 014010China;

2 College of Mechanical EngineeringBeijing University of TechnologyBeijing 100124China)

Key words:rolling bearing; fault diagnosis;feature extraction; wavelet-BP neural network; pattern recognition

Abstract:In view of the limitations of wavelet analysis and BP neural network in fault diagnosis,a bearing failure pattern recognition technology was proposed based on wavelet-BP neural network The traditional BP network activation function was replaced by wavelet basis function with good time-frequency localization properties By constructing and training the wavelet-BP neural networka pattern recognition network was obtainedand then the network was tested with new data The simulation results show that the method is practical and effective

地址:内蒙古包头市昆都仑区阿尔丁大街7号 邮编:014010 电话:0472-5951610或0472-5953910 Email:cky@imust.edu.cn nkdxb@imust.edu.cn

版权所有:内蒙古科技大学学报编辑部(©2013)